|
| 1: |
|
dbl(0) |
→ 0 |
| 2: |
|
dbl(s(X)) |
→ s(n__s(n__dbl(activate(X)))) |
| 3: |
|
dbls(nil) |
→ nil |
| 4: |
|
dbls(cons(X,Y)) |
→ cons(n__dbl(activate(X)),n__dbls(activate(Y))) |
| 5: |
|
sel(0,cons(X,Y)) |
→ activate(X) |
| 6: |
|
sel(s(X),cons(Y,Z)) |
→ sel(activate(X),activate(Z)) |
| 7: |
|
indx(nil,X) |
→ nil |
| 8: |
|
indx(cons(X,Y),Z) |
→ cons(n__sel(activate(X),activate(Z)),n__indx(activate(Y),activate(Z))) |
| 9: |
|
from(X) |
→ cons(activate(X),n__from(n__s(activate(X)))) |
| 10: |
|
s(X) |
→ n__s(X) |
| 11: |
|
dbl(X) |
→ n__dbl(X) |
| 12: |
|
dbls(X) |
→ n__dbls(X) |
| 13: |
|
sel(X1,X2) |
→ n__sel(X1,X2) |
| 14: |
|
indx(X1,X2) |
→ n__indx(X1,X2) |
| 15: |
|
from(X) |
→ n__from(X) |
| 16: |
|
activate(n__s(X)) |
→ s(X) |
| 17: |
|
activate(n__dbl(X)) |
→ dbl(X) |
| 18: |
|
activate(n__dbls(X)) |
→ dbls(X) |
| 19: |
|
activate(n__sel(X1,X2)) |
→ sel(X1,X2) |
| 20: |
|
activate(n__indx(X1,X2)) |
→ indx(X1,X2) |
| 21: |
|
activate(n__from(X)) |
→ from(X) |
| 22: |
|
activate(X) |
→ X |
|
There are 18 dependency pairs: